Computational

Demystifying Nonequilibrium Statistical Mechanics

Speaker(s): 
David Rogers
Dates: 
Thursday, August 31, 2017 - 4:00pm to 5:00pm

Recent general results on the statistics of nonequilibrium processes have opened up old debates between the exact dynamical and informational viewpoints on probability.  Many of the good properties of equilibrium systems are not rigorously provable without assuming ergodicity.  It turns out those arguments are even more relevant, and more pernicious, when working in a dynamical context.  Even though nonequilibrium research predates traditional equilibrium thermodynamics, it is still seen by many as a vast, uncharted territory.  In this talk, I show how there is a growing...

Graphane as an Efficient and Water-Free Hydrogen Fuel Cell Membrane

  • By Aude Marjolin
  • 8 May 2017

Hydrogen powered fuel cell cars, developed by almost every major car manufacturer, are ideal zero-emissions vehicles because they produce only water as exhaust. However, their reliability is limited because the fuel cell relies upon a membrane that only functions in when enough water is present, limiting the vehicle’s operating conditions. 

Karl Johnson and his group have found that the unusual properties of graphane – a two-dimensional polymer of carbon and hydrogen – could form a type of anhydrous “bucket brigade” that transports protons without the need for water, potentially leading to the development of more efficient hydrogen fuel cells for vehicles and other energy systems. Graduate research assistant Abhishek Bagusetty is the lead author on their paper “Facile Anhydrous Proton Transport on Hydroxyl Functionalized Graphane”, recently published in Physical Review Letters. Computational modeling techniques coupled with the high performance computational infrastructure at the University’s Center for Research Computing enabled them to design this potentially groundbreaking material. 

Venkat Viswanathan's Research Featured in MIT News

  • By Aude Marjolin
  • 22 March 2017

Venkat Viswanathan was featured in MIT News for his research in battery technologies. In collaboration with researchers from MIT, Viswanathan is studying a new kind of electrolyte for "self-healing" lithium battery cells, which could lead to longer driving range, lower cost electric vehicle batteries. 

Structure-Activity Relations in Heterogeneous Catalysis – A View from Computational Chemistry

Speaker(s): 
Phillipe Sautet
Dates: 
Friday, March 17, 2017 - 9:30am to 10:30am

The understanding of the catalytic properties of nanoparticle catalysts and the design of optimal composition and structures demands fast methods for the calculation of adsorption energies. By exploring the adsorption of O and OR (R=OH, OOH, OCH3) adsorbates on a large range of surface sites with 9 transition metals, we propose new structure sensitive scaling relations between the adsorption energy of two adsorbates that are valid for all metals and for all surface sites.1 This opens the way for a new class of activity volcano plots where the descriptor is not an energy...

2016 Behrend Computational Materials Meeting, November 19, 2016

  • By Aude Marjolin
  • 1 November 2016

The Behrend Computational Materials Meeting 2016 will be held Saturday, November 19 from 10 am to 4 pm at Penn State Behrend (Erie, PA). The focus of the meeting will be on Atomic Level Methods and Applications

There is no participation fee, and lunch will be provided. To officially register, please fill out the form below. Registration deadline is Wednesday Nov. 9, 2016. (Early registrations preferred).

Questions or concerns?  Please e-mail Blair Tuttle at brt10@psu.edu

Venkat Viswanathan Awarded Funding to Stop Dendrite Formation in Li-ion Batteries

  • By Aude Marjolin
  • 19 September 2016

Energy expert Venkat Viswanathan have received funding from the U.S. Department of Energy’s Advanced Research Projects Agency – Energy (ARPA-E) to study the use of dendrite-blocking polymers in lithium-ion batteries. 

When charged repeatedly, lithium-ion batteries run the risk of overheating, and even catching fire. This is due to the formation of dendrites, or microscopic fibers of lithium that can form during the charging cycle. Over time, these dendrites can grow long enough that they connect the battery’s electrodes to one another, causing the battery to short-circuit and become a potential hazard. In order to fully implement future lithium-ion battery technologies, which could greatly increase the battery power of our smartphones, electric vehicles, and more, engineers need to find a way to stop these dendrites from forming.

Phone: 
Websites: 
Personal | Department
Department of Mechanical Engineering, Carnegie Mellon University
Ph.D., Mechanical Engineering, Stanford University, 2013
Summary:

Venkat Viswanathan's research focus is on identifying the scientific principles governing material design, inorganic, organic and biomaterials, for novel energy conversion and storage routes. The material design is carried out through a suite of computational methods being developed in the group validated by experiments.  Some key research thrusts include identifying principles of electrolytes design (organic material) that can tune electrode catalysis, identification of new anode, cathode (inorganic materials) and electrolyte materials for next generation batteries, new electrocatalysts (inorganic) and biomaterials for energy storage and separation applications. In addition to material design, our group is involved in several cross-cutting areas such as battery controls, electric vehicle security and GPU accelerated computing.

Research interests:

  • Computational material design
  • Density functional theory simulations
  • Phase-field modeling
  • Next generation batteries, fuel cells
  • Electrocatalysis for energy conversion and storage
  • Data-driven material discovery
  • Bio-inspired and bio-mimetic materials
  • Controls for energy systems
  • GPU accelerated computing
Most Cited Publications: 
  1. "Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O2 Batteries," B. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshøj, J. K. Nørskov, and A. C. Luntz, J. Phys. Chem. Lett. 3, 997 (2012)
  2. "Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries," V. Viswanathan, K. S. Thygesen, J. S. Hummelshøj, J. K. Nørskov, G. Girishkumar, B. D. McCloskey and A. C. Luntz, J. Chem. Phys. 135, 214704 (2011)
  3. "Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries" Nagaphani B. Aetukuri, Bryan D. McCloskey, Jeannette M. García, Leslie E. Krupp, Venkatasubramanian Viswanathan & Alan C. Luntz, Nature Chemistry 7, 50 (2015)
  4. "Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces," Venkatasubramanian Viswanathan, Heine Anton Hansen, Jan Rossmeisl, and Jens K. Nørskov, ACS Catal. 2, 1654 (2012)
  5. "Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode," Hernan Sanchez Casalongue, Sarp Kaya, Venkatasubramanian Viswanathan, Daniel J. Miller, Daniel Friebel, Heine A. Hansen, Jens K. Nørskov, Anders Nilsson & Hirohito Ogasawara, Nature Communications 4, 2817 (2013)
Recent Publications: 
  1. "Surface Restructuring of Nickel Sulfide Generates Optimally Coordinated Active Sites for ORR Catalysis," Bing Yan, Dilip Krishnamurthy, Christopher H. Hendon, Siddharth Deshpande, Yogesh Surendranath, Venkatasubramanian Viswanathan, Joule 1, 1 (2017)
  2. "Maximal predictability approach for identifying the right descriptors for electrocatalytic reactions," Dilip Krishnamurthya, Vaidish Sumariab, Venkatasubramanian Viswanathan arXiv:1709.02875v2
  3. "Anisotropy in Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes," Zeeshan Ahmad, Venkatasubramanian Viswanathan, arXiv:1707.00064v2
  4. "Performance Metrics Required of Next-Generation Batteries to Make a Practical Electric Semi Truck," Shashank Sripad and Venkatasubramanian ViswanathanACS Energy Lett. 2, 1669 (2017)

Pages