Magnetic Nanostructures: A Playground for Fundamental Physics

When: 
Thursday, March 2, 2017 - 4:30pm to 5:30pm
Where: 
Wean Hall 7316

Nature becomes amazingly different from what we perceive with our eyes when zoomed in to the nanometer scale, where atomic spins interact and form diverse magnetic configurations. Besides holding great technological promise, magnetic nanostructures have also enabled a vibrant playground for fundamental physics—a thriving field known as spintronics. In this talk, I will introduce selected recent progress in spintronics that has reshaped our understanding of transport phenomena occurring at the microscopic scale. Special attention will be paid to antiferromagnetic materials, which are remarkably rich in nature, though their significance has been overshadowed by ferromagnets. Taking the interplay between electronic, magnetic, and mechanical degrees of freedom as a common thread, I will guide us into various intriguing phenomena involving domain wall motion, spin-Hall oscillator, spin-wave Faraday rotation, spin Nernst effect, and emergent gravity. In addition, I will demonstrate a conceptual advance that helps us understand many unique features of magnetic systems known as the Berry phase effect, the importance of which has been recognized by the 2016 Nobel prize in physics.