Studies of Natural and Artificial Photosynthesis

Who: Victor Batista, Yale University
Thursday, February 27, 2020 - 2:30pm
Chevron 150

Research statement: Our research is concerned with the development of rigorous and practical methods for simulations of quantum processes in complex systems as well as with applications studies of photochemical processes in proteins, semiconductor materials, and systems of environmental interest. We have recently made significant progress toward the establishment of rigorous quantum mechanical approaches for describing equilibrium and dynamical properties of complex quantum systems. We are currently investigating how to extend these calculations to investigate quantum mechanical processes involved in light harvesting mechanisms in semiconductor materials (e.g., functionalized TiO2) and biological molecules (e.g., rhodopsin). These studies aim to unravel the nature of molecular mechanisms responsible for the efficient detection and utilization of photon energy, advance our understanding of the primary photochemical event in the vertebrate vision process, and to examine the potential application of laser coherences to control photo-transduction dynamics. Other studies focus on the equilibrium and dynamical properties of weakly bound hydrated complexes responsible for changes in the global climate, including studies of the electronic structure and photo-reactivity of hydrated ozone complexes.