Featured Video

Recent News

Gurudev Dutt Wins Award in Million Dollar International Quantum U Tech Accelerator

  • By Jenny Stein
  • 7 September 2020

The Innovare Advancement Center, a partnership between the Air Force Research Laboratory Information Directorate (AFRL/RI), New York State, and others, hosted a unique quantum-focused virtual pitch competition, the “Million Dollar International Quantum U Tech Accelerator,” on September 1-3 to launch their new open innovation campus in Rome, NY.

The goal of the competition was to encourage university researchers that pursue high impact projects in quantum timing, sensing, information processing/computing, and communications/networking to bring a new quantum phenomenon into the military while offering about $1,000,000 to the finalists.

Even with nearly 250 teams from 22 countries submitting proposals to take part in the competition, two PQI faculty, Dr. Tom Purdy and Dr. Gurudev Dutt, were among the top 36 selected to take part in the live pitch event, each giving a 10-minute presentation with Q&A (watch presentations from Tom and Gurudev). Ultimately, 18 finalists were selected for the $1M+ in basic research funds and Gurudev won in the topic of quantum sensing.

Microwaving New Materials

  • By Ke Xu
  • 24 August 2020

Reeja Jayan and her student Nathan Nakamura has made a breakthrough in our understanding of how microwaves affect materials chemistry. Unlike prior studies, which suffered from the inability to monitor structural changes while the microwaves were applied, Jayan developed novel tools (a custom-designed microwave reactor enabling in-situ synchrotron x-ray scattering) for studying these dynamic, field-driven changes in local atomic structure as they happen. By revealing the dynamics of how microwaves affect specific chemical bonds during the synthesis, Jayan is laying the groundwork for tailor-made ceramic materials with new electronic, thermal, and mechanical properties. Building on this concept, she is investigating how to use microwaves to engineer new materials.

The results of Jayan’s research were published in the Journal of Materials Chemistry AThe paper was recognized as part of the 2020 Emerging Investigators Issue of the journal.

Computational Quantum Chemical Explorations

  • By Jenny Stein
  • 14 August 2020

Developing catalysts for sustainable fuel and chemical production requires a kind of Goldilocks Effect – some catalysts are too ineffective while others are too uneconomical. Catalyst testing also takes a lot of time and resources. New breakthroughs in computational quantum chemistry, however, hold promise for discovering catalysts that are “just right” and thousands of times faster than standard approaches.

University of Pittsburgh Associate Professor John A. Keith and his lab group at the Swanson School of Engineering are using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are “too slow” or “too expensive”, far more thoroughly and quickly than was considered possible a few years ago. 

The Keith Group’s research compilation, “Computational Quantum Chemical Explorations of Chemical/Material Space for Efficient Electrocatalysts” was featured this month in Interface, a quarterly magazine of The Electrochemical Society.