Gary Fedder

Department of Electrical and Computer Engineering, Carnegie Mellon University
Ph.D., Electrical Engineering and Computer Science, Berkeley, 1994

As information systems have evolved from isolated computational engines to distributed networks, the autonomous ability to gather and act on information is becoming increasingly important. My research is in the interdisciplinary area of MicroElectroMechanical Systems (MEMS): sensor and actuator systems with performance derived from integration of electronics and mechanical structures with features measured in microns to millimeters. Fabrication of the batch-fabricated electromechanical devices and the development of related processes leverage the enormous investment in mature Very-Large-Scale Integrated (VLSI) circuit manufacturing. Benefits of this approach include much lower manufacturing cost, greater miniaturization, greater integration, and in many cases higher performance than can be achieved with conventional methods used to build systems requiring sensors and actuators.

My research focus on integrated MEMS links to a long-term trend to the manufacture of low-cost sensor-and-actuator Application-Specific Integrated Circuits (ASICs). Integrated MEMS technology is becoming pervasive in embedded systems and is continually evolving to be relevant in new applications. A core general direction in my research group is design, fabrication, and testing of microdevices that are made thorugh integration with conventional foundry CMOS processes, which enable on-chip electrostatically actuated microstructures, capacitive and piezoresistive sensors, and polysilicon thermal heaters. Active projects include MEMS system modeling and design methodologies, accelerometers and gyroscopes for motion sensing, an electrothermal microcooler system, ultra-compliant neural probes, piezoelectric energy scavenging for implantable pressure sensors, nonlinear parametric microresonators, and self-healing RF microresonator oscillators and filters. Challenges include system design, process integration, and physical modeling including environmental effects.

Most Cited Publications
  1. "Endoscopic optical coherence tomography based on a microelectromechanical mirror," Yingtian Pan, Huikai Xie, and Gary K. Fedder, Opt. Lett. 26, 1966 (2001)
  2. "Laminated high-aspect-ratio microstructures in a conventional CMOS process," G. K. Fedder, S. Santhanam, M. L. Reed, S, C. Eagle, D. E Guillou, M. S.-C. Lu, and L. R. Carley, Proceedings of Ninth International Workshop on Micro Electromechanical Systems, San Diego, CA, 13 (1996)
  3. "Simulation of microelectromechanical systems," Gary Keith Fedder, PhD Dissertation (1994)
  4. "A Low-Noise Low-Offset Capacitive Sensing Amplifier for a 50-mg/ÖHz Monolithic CMOS MEMS Accelerometer," Jiangfeng Wu, Gary K. Fedder, and L. Richard Carley, IEEE Journal of Solid-State Circuits 39, 722 (2004)
  5. "Technologies for Cofabricating MEMS and Electronics," G. K. Fedder, R. T. Howe, T. J. K. Liu and E. P. Quevy, Proceedings of the IEEE 96, 306 (2008)
Recent Publications
  1. "Insulation of thin-film parylene-C/platinum probes in saline solution through encapsulation in multilayer ALD ceramic films," Mats Forssell, Xiao Chuan Ong, Rakesh Khilwani, O. Burak Ozdoganlar, Gary K. Fedder, Biomedical Microdevices 20, 61 (2018)
  2. "Integrated Electronic Device with Flexible and Stretchable Substrate," Fedder, Gary K., Majidi, Carmel, Leduc, Philip R., Weiss, Lee E., Bettinger, Christopher J. Naserifar, Naser, United States Patent Application 20180206336 
  3. "Ultracompliant Hydrogel-Based Neural Interfaces Fabricated by Aqueous-Phase Microtransfer Printing," Wei-Chen Huang, Xiao Chuan Ong, Ik Soo Kwon, Chaitanya Gopinath, Lee E. Fisher, Haosheng Wu, Gary K. Fedder, Robert A. Gaunt,* and Christopher J. Bettinger, Adv. Funct. Mater.1801059 (2018).
  4. "High dynamic range cmos-mems capacitive accelerometer array", Metin G. Guney, Xiaoliang Li, Vincent Pey J. Chung, Jeyanandh Paramesh, Tamal Mukherjee, and Gary K. Fedder, IEEE Xplore (2018).
  5. "Stress Effects and Compensation of Bias Drift in a MEMS Vibratory-Rate Gyroscope," E. Tatar; T. Mukherjee; G. K. FedderJournal of Microelectromechanical Systems 99, 1 (2017)
  6. "Drop casting of stiffness gradients for chip integration into stretchable substrates," Naser Naserifar, Philip R LeDuc and Gary K Fedder, J. Micromech. Microeng. 27, 045018 (2017)
  7. "A transfer process to fabricate ultra-compliant neural probes in dissolvable needles," Xiao Chuan Ong, Rakesh Khilwani, Mats Forssell, O Burak Ozdoganlar and Gary K FedderJ. Micromech. Microeng 27, 035008 (2017)

More Members