Gurudev Dutt

Personal | Department
Department of Physics and Astronomy, University of Pittsburgh
Ph.D., Physics, University of Michigan, 2004

Gurudev Dutt focuses on the quantum control of condensed matter systems. Advances in material fabrication and nanotechnology have pushed modern electronic and optical devices to regimes where quantum properties of matter become important. A key feature of quantum physics is the quantum superposition principle. For a single particle, this permits the existence of a phase coherent quantum wavefunction; for two or more particles, quantum entangled wavefunctions exhibit non-classical correlations between the particles. Quantum coherence and entanglement are not only the cornerstone of modern physics, but also have become tools in the growing field of quantum information science and technology with which to realize new paradigms for secure communication, enhanced computation, and precision metrology. 

While there have been a number of demonstrations of fundamental principles using isolated atoms and photons, coherent quantum control and large scale entanglement remains experimentally challenging in robust, stable condensed matter systems. The basic building blocks of these solid-state quantum systems are simple, and familiar to most physicists: single spins, photons and springs. The Dutt group is building quantum control toolboxes for thesesystems, motivated by the need for larger interconnected systems. Tools from several areas such as nuclear magnetic resonance, quantum optics, quantum information science, chemistry and nanoscience are required in this hybrid approach. 

Namesort descending Position Email Joined
Ji, Peng Graduate Student
Liu, Chenxu Graduate Student 5 years ago
Zhang, Kai Graduate Student
Most Cited Publications
  1. "Nanoscale magnetic sensing with an individual electronic spin in diamond," J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth & M. D. Lukin, Nature 455, 644 (2008)
  2. "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, M. D. Lukin, Science 316, 1312 (2007)
  3. "Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond," L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, M. D. Lukin, Science 314, 281 (2006)
  4. "Quantum entanglement between an optical photon and a solid-state spin qubit," E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov & M. D. Lukin, Nature 466, 730 (2010)
  5. "Stimulated and Spontaneous Optical Generation of Electron Spin Coherence in Charged GaAs Quantum Dots," M. V. Gurudev Dutt, Jun Cheng, Bo Li, Xiaodong Xu, Xiaoqin Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, Sophia E. Economou, Ren-Bao Liu, and L. J. Sham, Phys. Rev. Lett. 94, 227403 (2005)
Recent Publications
  1. "Charge state dynamics of the nitrogen vacancy center in diamond under 1064 nm laser excitation," Peng Ji, M. V. Gurudev DuttPhys. Rev. B 94, 024101 (2016)
  2. "Experimental limits on the fidelity of adiabatic geometric phase gates in a single solid-state spin qubit," Kai Zhang, N M Nusran, B R Slezak and M V Gurudev Dutt, New J. Phys. 18, 053029 (2016)
  3. "Loading an Optical Trap with Diamond Nanocrystals Containing Nitrogen-Vacancy Centers from a Surface," Jen-Feng Hsu, Peng Ji, M. V. Gurudev Dutt, Brian R. D'Urso, arXiv:1506.08215
  4. "Measurement of the Berry Phase in a Single Solid-State Spin Qubit," Kai Zhang, Naufer M. Nusran, Bradley R. Slezak, M. V. Gurudev Dutt, arXiv:1410.2791
  5. "Optimizing phase-estimation algorithms for diamond spin magnetometry," N. M. Nusran and M. V. Gurudev Dutt, Phys. Rev. B 90, 024422 (2014)

More Members