Michael Hatridge
Quantum information is a rapidly growing theoretical and experimental field which seeks to harness the complexity and coherence of quantum bits to address challenges in computation and the simulation of complex quantum systems. My research focuses on the use of superconducting microwave circuits as a quantum information platform. In particular, we will focus on the use of microwave photons as quantum information carriers. We will develop techniques to create, manipulate, and measure microwave light and use it to entangle larger quantum systems.
Efficient amplification of microwave signals is fundamental to this research, as it allows us to faithfully decode and record information contained in pulses of microwave light. We will develop superconducting parametric amplifiers with the goal of achieving performance very close to the quantum limit, where the amplifier itself can perform unitary operations on its input fields. This allows us to create new and complex measurement operations, which in turn will be used to entangle remote quantum bits and detect and remedy errors in quantum registers.
 "Josephson parametric converter saturation and higher order effects," G. Liu, T.C. Chien, X. Cao, O. Lanes, E. Alpern, D. Pekker, and M. Hatridge, arXiv:1703.04425v1
 "Quantum memory with millisecond coherence in circuit QED," Reagor, M., Pfaff, W., Axline, C., Heeres, R.W., Ofek, N., Sliwa, K., Holland, E., Wang, C., Blumoff, J., Chou, K., Hatridge, M.J., Frunzio, L., Devoret, M.H., Jiang, L., Schoelkopf, R.J., Phys Rev B 94, 014506 (2016)
 "Theory of remote entanglement via quantumlimited phasepreserving amplification," Silveri, M., ZalysGeller, E., Hatridge, M., Leghtas, Z., Devoret, M.H., Girvin, S.M.,
Phys Rev A 93, 062310 (2016)  "Planar Multilayer Circuit Quantum Electrodynamics," Minev, Z.K., Serniak, K., Pop, I.M., Leghtas, Z., Sliwa, K., Hatridge, M., Frunzio, L., Schoelkopf, R.J., Devoret, M.H., Phys Rev Applied 5, 044021 (2016)
 "Comparing and combining measurementbased and drivendissipative entanglement stabilization," Liu, Y., Shankar, S., Ofek, N., Hatridge, M., Narla, A., Sliwa, K.M., Frunzio, L., Schoelkopf, R.J., Devoret, M.H., Phys Rev X, 6, 011022 (2016)
 "Robust concurrent remote entanglement between two superconducting qubits," Narla, A., Shankar, S., Hatridge, M., Leghtas, Z., Sliwa, K.M., ZalysGeller, E., Mundhada, S.O., Pfaff, W., Frunzio, L., Schoelkopf, R.J., Devoret, M.H., Phys Rev X, 6, 031036 (2016)
Name  Position  

Alpern, Edan  Undergraduate Student  
Bilgin, Anil  Undergraduate Student  
Brindock, Erick  Undergraduate Student  
Cao, Xi  Graduate Student  xic71@pitt.edu 
Chien, TzuChiao  Graduate Student  tzc7@pitt.edu 
Lanes, Olivia  Graduate Student  Otl1@pitt.edu 
Liu, Gangqiang  Postdoctoral Fellow  gal24@pitt.edu 
Lv, Pinlei  Graduate Student  
Motz, Sarah  Undergraduate Student  
Mucci, Maria  Graduate Student  
Rowden, Alexander  Undergraduate Student 
 "SQUIDdetected magnetic resonance imaging in microtesla fields," John Clarke, Michael Hatridge, Michael Mößle. Annu. Rev. Biomed. Eng. 9 (2007): 389413.
 "Quantum backaction of an individual variablestrength measurement," Michael Hatridge, Shyam Shankar, Mazyar Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K. M. Sliwa, Science 339, no. 6116 (2013): 178181.
 "Autonomously stabilized entanglement between two superconducting quantum bits," Shyam Shankar, Michael Hatridge, Zaki Leghtas, K. M. Sliwa, Aniruth Narla, Uri Vool, Steven M. Girvin, Luigi Frunzio, Mazyar Mirrahimi, Michel H. Devoret. Nature 504, no. 7480 (2013): 419.
 "Confining the state of light to a quantum manifold by engineered twophoton loss," Zaki Leghtas, Steven Touzard, Ioan M. Pop, Angela Kou, Brian Vlastakis, Andrei Petrenko, Katrina M. Sliwa. Science 347, no. 6224 (2015): 853857.
 "SQUIDdetected microtesla MRI in the presence of metal," Michael Mößle, SongI. Han, Whittier R. Myers, SeungKyun Lee, Nathan Kelso, Michael Hatridge, Alexander Pines, John Clarke. Journal of Magnetic Resonance 179, no. 1 (2006): 146151.

"Braidonium: a braiding quantum circuit based on the 4π Josephson effect," John P. T. Stenger, Michael Hatridge, Sergey M. Frolov, David Pekker, arXiv:1808.03309v1

"Josephson parametric converter saturation and higher order effects," G. Liu, T.C. Chien, X. Cao, O. Lanes, E. Alpern, D. Pekker, and M. Hatridge, arXiv:1703.04425, (2017)

"Robust concurrent remote entanglement between two superconducting qubits," Narla, S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa, E. ZalysGeller, S. O. Mundhada, W. Pfaff, L. Frunzio, R. J. Schoelkopf, M. H. Devoret, arXiv:1603.03742 (2016)

"Theory of remote entanglement via quantumlimited phasepreserving amplification," Matti Silveri, Evan ZalysGeller, Michael Hatridge, Zaki Leghtas, Michel H. Devoret, and S. M. Girvin, arXiv:1507.00732 (2016)

"Comparing and Combining MeasurementBased and DrivenDissipative Entanglement Stabilization," Y. Liu, S. Shankar, N. Ofek, M. Hatridge, A. Narla, K. M. Sliwa, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret, Phys. Rev. 6, 011022 (2016)

"Reconfigurable Josephson Circulator/Directional Amplifier," K. M. Sliwa, M. Hatridge, A. Narla, S. Shankar, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret, Phys. Rev. 5, 041020 (2015)