# Michael Widom

Professor Widom's research focuses on theoretical modeling of novel materials in condensed matter and biological physics settings. Methods of statistical mechanics, quantum mechanics and computer simulation are used to investigate structure, stability and properties of these materials.

Metals in noncrystalline (nonperiodic) structures are a major focus of effort, including: Liquid metals, for example the liquid-liquid transition in supercooled silicon); Metallic glass es, which are multi-component alloys that freeze into a solid while maintaining a liquid-like structure; Quasicrystals, which are partially ordered and highly symmetric structures that are spatially quasiperiodic. These problems are addressed using first-principles total energy calculation coupled with statistical mechanics to model entire ensembles of probable structures.

Biological physics is the second major focus, including two specific projects. Virus capsids are highly symmetric protein shells that protect the viral genome. Methods of continuum mechanics and symmetry analysis are applied to identify soft modes of deformation. The RNA molecule plays many roles at the heart of gene expression, some of which such as microRNAs and riboswitches have only recently been discovered. A characteristic feature of RNA is its highly convoluted secondary structure, which are analyzed from both thermodynamic and kinetic points of view.

Name | Position | |
---|---|---|

Mihalkovic, Marek | Graduate Student | marek.mihalkovic@savba.sk |

Yao, Sanxi | Graduate Student | sanxiy@andrew.cmu.edu |

- "Quasicrystal equilibrium state,"
__Michael Widom__, Katherine J. Strandburg, and Robert H. Swendsen, Phys. Rev. Lett. 58, 706 (1987) - "Ductility improvement of amorphous steels: Roles of shear modulus and electronic structure," X.J. Gu, S. Joseph Poon, Gary J. Shiflet,
__Michael Widom__, Acta Materialia 56, 88 (2008) - "Signature of nearly icosahedral structures in liquid and supercooled liquid copper," P. Ganesh,
__M. Widom,__Physical Review B 74, no. 13 (2006): 134205. - "Radial fingering in a Hele-Shaw cell: a weakly nonlinear analysis," José A. Miranda,
__Michael Widom__, Physica D: Nonlinear Phenomena 120, 315 (1998) - "Symmetry, Landau Theory and Polytope Models of Glass." David R Nelson and
__Michael Widom__.*Nuclear Physics B 240.1 (1984)*

- "Coexistence of Quantum Spin Hall Edge State and Proximity-Induced Superconducting Gap in Monolayer 1T'-WTe2." Felix Lüpke, Dacen Waters, Sergio C de la Barrera,
__Michael Widom__, David G Mandrus, Jiaqiang Yan, Randall M Feenstra, and Benjamin M Hunt.*arXiv 1903.00493 (2019)* - "First Principles Calculation of the Entropy of Liquid Aluminum."
__Michael Widom__and Michael Gao.*Entropy 21.2 (2019)* - "Band Structure Theory of the BCC to HCP Burgers Distortion," Bojun Feng and
__Michael Widom,__arXiv:1809.06429v1 (2018). - "Modeling the structure and thermodynamics of high-entropy alloys,"
__Michael Widom,__J. Mater. Res. (2018) - "Information Entropy of Liquid Metals," M. C. Gao, and
__M. Widom__, J. Phys. Chem. B (2018)