Confining the State of Light to a Quantum Manifold by Engineered Two-Photon Loss

  • By Workstudy User
  • 15 December 2015

Dynamical systems, whether classical or quantum, usually require a method to stabilize performance and maintain the required state. For instance, communication between computers requires error correction codes to ensure that information is transferred correctly. In a quantum system, however, the very act of measuring it can perturb it. This study shows that engineering the interaction between a quantum system and its environment can induce stability for the delicate quantum states, a process that could simplify quantum information processing.

Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a specially engineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have confined the state of a superconducting resonator to the quantum manifold spanned by two coherent states of opposite phases and have observed a Schrödinger cat state spontaneously squeeze out of vacuum before decaying into a classical mixture. This experiment points toward robustly encoding quantum information in multidimensional steady-state manifolds. 

View full article here.