Venkat Viswanathan's Research Featured in MIT News

Venkat Viswanathan was featured in MIT News for his research in battery technologies. In collaboration with researchers from MIT, Viswanathan is studying a new kind of electrolyte for "self-healing" lithium battery cells, which could lead to longer driving range, lower cost electric vehicle batteries. 

The team will studty a new kind of electrolyte for “self-healing” lithium battery cells, which will be formed by adding a halide element such as iodine, under a grant from the U.S. Department of Energy’s Office of Efficiency and Renewable Energy. The work could lead to longer driving range, lower cost electric vehicle batteries.

Through a combination of computer modeling work at CMU and experimental tests at MIT, the researchers hope to show that halide-enriched battery cells can electrochemically form a lithium-halide-based solid electrolyte to protect lithium metal electrodes. Electrolytes are the barrier through which the active elements of a battery, for example, lithium ions, cycle back and forth between a positive electrode and a negative electrode.

The researchers hope the combination of a lithium-halide solid electrolyte with lithium metal negative electrodes will slow or prevent the buildup of icicle-like metal filaments, known as “dendrites,” that build up on the metal electrode. This unwanted buildup eventually leads to battery failure. The researchers believe the iodine-enhanced electrolyte may offer a “self-healing” process that protects the electrode from sprouting these dendrites. Under this project, they will develop prototype batteries, whose performance can be compared to similar lithium batteries without halide additives.

Read the original article here.