The Isayev lab works at the interface of theoretical chemistry, pharmaceutical sciences and computer science. In particular, we are using molecular simulations and artificial intelligence (AI) to solve hard problems in chemistry. We are working towards the acceleration of molecular discovery by the combination of AI, informatics and high-throughput quantum chemistry. We also focus on both generative and predictive ML models for chemical and biological data. Details on specific projects can be found below.
Accelerating computational chemistry with deep learning: We are developing fully transferable deep learning potentials for molecular and materials systems. Such atomistic potentials are highly accurate compared to reference QM calculations at speeds 107faster. Neural network potentials are shown to accurately represent the underlying physical chemistry of molecules through various test cases including chemical reactions, kinetics, thermochemistry, structural optimization, and molecular dynamics simulations.
Materials informatics: Material informatics is a rapidly emerging data- and knowledge-driven approach for the identification of novel materials for a range of applications, including solar energy conversion. As the proliferation of high-throughput methods in chemical sciences is increasing the wealth of data in the field, the gap between accumulated-information and derived knowledge widens. We address the issue of scientific discovery in chemical and biological databases by introducing novel analytical approaches based on large-scale data mining and machine learning.
De Novo molecular design: The de novo molecular design problem involves generating novel molecular structures or focused molecular libraries with desirable properties. It solves a so-called inverse design problem. We develop artificial intelligence method that enables the design of chemical libraries with the desired physicochemical and biological properties or both.