David Snoke's PRL Article Highlighted in Physics Viewpoint

  • By Aude Marjolin
  • 9 January 2017

Matter-Light Condensates Reach Thermal Equilibrium

Making use of improved microcavities, hybrid condensates of matter and light can be tuned to reach a thermal equilibrium state, despite their finite lifetime.

In a laser, coherent light is created by stimulated emission of photons from an “inverted” state of matter that is significantly out of thermal equilibrium. “Inverted” means that excited states of the matter are more occupied than lower energy states, so that emission is more likely than absorption. The coherence of laser light is closely related to a quite different, and less commonly encountered, state of matter—a Bose-Einstein condensate (BEC). In the textbook description of a BEC, at low enough temperatures or high enough densities, a large number of particles occupy the same state, producing a coherent state of matter. In contrast to laser light, the textbook BEC is in thermal equilibrium. Condensates of polaritons—half-light, half-matter quasiparticles—have so far been found in conditions halfway between those of an equilibrium BEC and those of a laser. Work by David Snoke and colleagues now shows that such polariton condensates can be tuned to reach a thermal equilibrium state. With this tunability between an equilibrium and nonequilibrium state, researchers can explore how the character of phase transitions evolves between the two limits.

Breakthrough in Particle Control Creates Special Half-Vortex Rotation

  • By Aude Marjolin
  • 3 March 2015

A breakthrough in the control of a type of particle known as the polariton has created a highly specialized form of rotation. 

PQI faculty Andrew Daley and David Snoke and their colleages at Princeton University conducted a test in which they were able to arrange the particles into a 'ring geometry' form in a solid-state environment. The result was a half-vortex in a 'quantized rotation' form.