Kevin Chen and Peyman Givi Among 2017 Carnegie Science Awards Honorees

  • By Aude Marjolin
  • 5 April 2017

Among the 2017 Carnegie Science Awards honorees are Kevin P. Chen, who is the winner in the Innovation in Energy category, and Peyman Givi, who received an honorable mention in the University/Post-Secondary Educator category. The Carnegie Science Center established the awards program in 1997 to recognize and promote outstanding science and technology achievements in western Pennsylvania, and the winners will be honored May 12 at the Carnegie Music Hall in Oakland.

Department of Physics and Astronomy, University of Pittsburgh
Ph.D., Physics, University of California, Santa Barbara, 1993

The goal of my research is to identify sources of student difficulties in learning physics both at the introductory and advanced levels, and to design, implement, and assess curricula/pedagogies that may significantly reduce these difficulties. The objective is to enable students at all levels to develop critical thinking skills, and to become good problem solvers and independent learners.

Below are examples of investigations in both the introductory and advanced courses we are pursuing:

  • Difficulties in learning Quantum Mechanics and tutorial development: We have been investigating the difficulties that advanced undergraduate students have in learning quantum physics by designing surveys and interviewing individual students. We find that the difficulties and misconceptions displayed by advanced students are largely independent of their background, teaching style, and textbook similar to those documented for introductory physics. We are currently developing and evaluating tutorials for helping students learn various topics in advanced quantum mechanics.
  • Introductory level topics: We have been investigating the difficulties that introductory students have with energy and momentum concepts, symmetry and Gauss's law, magnetism, and rotational and rolling motion concept. We have developed and administered free–response and multiple–choice questions and conducted interviews with individual students using think–aloud protocol to understand their difficulties. We have developed tutorials to help students learn superposition, symmetry, and Gauss's law.
  • Cognitive issues in learning physics: We are interested in researching the connection between student difficulties in learning physics and models of cognition. For example, we want to understand how physical intuition develops and how the problem solving strategies of individuals at different levels of expertise in physics shows similaritities and differences when physical intuition fails. We are also investigating how expertise develops in the context of learning physics.
  • Teaching effective problem solving: We are currently investigating the extent to which students can be taught effective problem solving heuristics. We are developing video–tutorials that help students learn effective problem solving strategies using concrete examples in an interactive environment. The tutorials are designed to provide scaffolding support and help students view the problem solving process as an opportunity for knowledge and skill acquisition rather than a "plug and chug" chore. Preliminary evaluations are encouraging.
Most Cited Publications
  1. "Modeling the interactions between polymers and clay surfaces through self-consistent field theory." Anna C Balazs, Chandralekha Singh, Ekaterina Zhulina. Macromolecules.
  2. "Theoretical phase diagrams of polymer/clay composites: the role of grafted organic modifiers." Valeriy V Ginzburg, Chandralekha Singh, Anna C Balazs. Macromolecules.
  3. "Student understanding of quantum mechanics." Chandralekha Singh. American Journal of Physics.
  4. "Modeling the phase behavior of polymer/clay nanocomposites." Anna C Balazs, Chandralekha Singh, Ekaterina Zhulina, Yulia Lyatskaya. Accounts of chemical research.
  5. "Multiple-choice test of energy and momentum concepts." Chandralekha Singh, David Rosengrant. American Journal of Physics.
Recent Publications
  1. "All aboard! Challenges and successes in professional development for physics lab TAs." Danny Doucette, Russell Clark, Chandralekha Singh. arXiv preprint arXiv:1911.01363.
  2. "What's happening in traditional and inquiry-based introductory labs? An integrative analysis at a large research university." Danny Doucette, Russell Clark, Chandralekha Singh. arXiv preprint arXiv:1911.01362.
  3. "Student understanding of Fermi energy, the Fermi-Dirac distribution and total electronic energy of a free electron gas." Paul Justice, Emily Megan Marshman, Chandralekha Singh. European Journal of Physics.
  4. "Validation and administration of a conceptual survey on the formalism and postulates of quantum mechanics." Emily Marshman, Chandralekha Singh. Physical Review Physics Education Research.
  5. "Impact of traditional or evidence-based active-engagement instruction on introductory female and male students’ attitudes and approaches to physics problem solving." Melanie Good, Alexandru Maries, Chandralekha Singh. Physical Review Physics Education Research.

Chandralekha Singh Reflects on Fifth International Conference on Women in Physics

  • By Workstudy User
  • 27 April 2015

This month's APS Back Page features PQI faculty Chandralekha Singh who describes the Fifth International Conference on Women in Physics with participation from 49 countries around the world: 

In August 2014, I attended the 5th IUPAP International Conference on Women in Physics (ICWIP 2014) in Waterloo, Canada as part of the U.S. delegation. The conference was attended by approximately 215 female physicists and a few male physicists, all from 49 different countries. There were research talks, panels, workshops, breakout sessions and posters on issues related to women in physics.

A 'Quantum Repository' to Make Learning Chemistry Easier

  • By Aude Marjolin
  • 19 November 2014

Remember constructing ball-and-stick models of molecules in your high school or college chemistry classes? Well, that might soon be a thing of the past for Pitt students looking to get a three-dimensional understanding of molecular structures.

PQI faculty Geoffrey Hutchison and Daniel Lambrecht recently received a 2014 Camille and Henry Dreyfus Special Grant Program in the Chemical Sciences award for their project, "Creating an Open Quantum Chemistry Repository." This effort aims to create an open mobile-ready, web-based database of accurate, quantum calculations of molecules. The "Pitt Quantum Repository" will consist at first of 50,000 to 100,000 molecules and quantum chemical data. The database will grow over time to include more molecules and more computed properties.