Fall 2016

What Quantum Measurements Measure

Speaker(s): 
Robert Griffiths
Dates: 
Tuesday, December 6, 2016 - 12:00pm to 1:00pm

Discussions of the infamous measurement problem of quantum foundations tend to focus on how the output of a measurement, the pointer position, can be thought of in consistent quantum mechanical terms, while ignoring the equally important issue of what this outcome says about the earlier microscopic situation the apparatus was designed to measure. An experimental physicist is typically much more interested in the path followed by a particle before it triggered his detector than in what happened later, and if quantum mechanics cannot provide a clear explanation, how can...

Nitin Samarth (Penn State): Topological Spintronics: From the Haldane Phase to Spin Devices

We provide a perspective on the recent emergence of “topological spintronics,” which relies on the existence of helical Dirac electrons in condensed matter. Spin- and angle-resolved photoemission spectroscopy shows how the spin texture of these electronic states can be engineered using quantum tunneling [1] or by breaking time-reversal symmetry [2]. Inappropriately designed systems, broken time-reversal symmetry transforms helical Dirac states into chiral edge states, a realization of Haldane’s Chern insulator phase of matter. This is characterized by a precisely quantized Hall conductance and dissipationless edge transport without a magnetic field. We show how these edge states can be quantitatively characterized by analyzing their giant anisotropic magnetoresistance [3]. At miilikelvin temperatures, the interplay between Chern states and disordered magnetism [4] results in surprising behavior, perhaps consistent with quantum tunneling out of a ‘false vacuum’ [5]. Finally, we show how these helical Dirac electrons provide a possible pathway toward a spin device technology that works at room temperature [6,7].

[1] M. Neupane, A. Richardella et al.,Nature Communications 5, 3841 (2014).
[2] S.-Y. Xu et al., Nature Physics 8, 616 (2012).
[3] A. Kandala,A. Richardella, et al.,Nature Communications 6, 7434 (2015).
[4] E. Lachman et al., Science Advances 1, e1500740(2015).
[5] Minhao Liu et al., Science Advances 2, e1600167(2016).

New Formulations of Perturbative Quantum Field Theory

Speaker(s): 
Tim Adamo
Dates: 
Wednesday, November 30, 2016 - 4:30pm to 6:30pm

The S-matrix is among the most basic -- and most physically relevant -- observables in any quantum field theory. At tree-level, it is well-defined even for theories that are not UV finite, such as general relativity, and captures the full non-linear complexity of the equations of motion. The traditional Feynman approach to computing S-matrix elements (scattering amplitudes) relies on a space-time Lagrangian description of the QFT we are interested in. However, remarkably compact expressions have been discovered for the full tree-level S-matrix of a wide array of massless...

Panel Discussion on the 2016 Nobel Prizes

Speaker(s): 
Multiple speakers
Dates: 
Tuesday, November 29, 2016 - 4:45pm to 5:45pm

The Nobel Prizes in Physiology or Medicine, Chemistry and Physics are considered by many to be the most prestigious award available in science. The awards recognize notable discoveries that have profoundly impacted science, and often the world around us. A panel of professors from Carnegie Mellon's Mellon College of Science will discuss the discoveries that won Nobel Prizes this year. 

  • Assistant Professor of Physics Di Xiao will discuss the 2016 Nobel Prize in Physics, which was awarded to David J. Thouless, F. Duncan M. Haldane and J.
  • ...

Axel Hoffmann (Argonne National Laboratory): Room Temperature Generation and Manipulation of Magnetic Skyrmions

The field of spintronics, or magnetic electronics, is maturing and giving rise to new subfields. An important ingredient to the vitality of magnetism research in general is the large complexity due to competitions between interactions crossing many length scales and the interplay of magnetic degrees of freedom with charge (electric currents), phonon (heat), and photons (light). One perfect example, of the surprising new concepts being generated in magnetism research is the recent discovery of magnetic skyrmions. Magnetic skyrmions are topologically distinct spin textures that are stabilized by the interplay between applied magnetic fields, magnetic anisotropies, as well as symmetric and antisymmetric exchange interactions. Due to their topology magnetic skyrmions can be stable with quasi-particle like behavior, where they can be manipulated with very low electric currents. This makes them interesting for extreme low-power information technologies, where it is envisioned that data will be encoded in topological charges, instead of electronic charges as in conventional semiconducting devices. Towards the realization of this goal we demonstrated magnetic skyrmions in magnetic heterostructures stable at room temperature, which can be manipulated using spin Hall effects. Furthermore, using inhomogeneous electric charge currents allows the generation of skyrmions in a process that is remarkably similar to the droplet formation in surface-tension driven fluid flows. However, detailed micromagnetic simulations show that depending on the electric current magnitude there are at least two regimes with different skyrmion formation mechanisms. Lastly, we demonstrated that the topological charge gives rise to a transverse motion on the skyrmions, i.e., the skyrmion Hall effect, which is in analogy to the ordinary Hall effect originating from the motion of electrically charged particles in the presence of a magnetic field.

This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. Lithographic patterning was carried out at the Center for Nanoscale Materials, which is supported by DOE, Office of Science, BES (#DE-AC02-06CH11357).

Topological Spintronics: From the Haldane Phase to Spin Devices

Speaker(s): 
Nitin Samarth
Dates: 
Monday, November 28, 2016 - 4:30pm to 6:00pm

We provide a perspective on the recent emergence of “topological spintronics,” which relies on the existence of helical Dirac electrons in condensed matter. Spin- and angle-resolved photoemission spectroscopy shows how the spin texture of these electronic states can be engineered using quantum tunneling [1] or by breaking time-reversal symmetry [2]. Inappropriately designed systems, broken time-reversal symmetry transforms helical Dirac states into chiral edge states, a realization of Haldane’s Chern insulator phase of matter. This is characterized by a precisely...

2D Materials: Challenges and Opportunities for Future Electronics

Speaker(s): 
Robert Wallace
Dates: 
Friday, November 4, 2016 - 9:30am to 10:30am

The size reduction and economics of integrated circuits, captured since the 1960’s in the form of Moore’s Law, is under serious challenge. Current industry roadmaps reveal that physical limitations include reaching aspects associated with truly atomic dimensions, and the cost of manufacturing is reaching such values that only 2 or 3 companies can afford leading edge capabilities. To address the physical limitations, 2D materials such as graphene, phosphorene, h-BN, and transition metal dichalcogenides have captured the imagination of the electronics community...

Next-Generation Computing using Spin-Based Materials

Speaker(s): 
Jean Anne C. Incorvia
Dates: 
Friday, October 28, 2016 - 12:00pm to 1:30pm

We are at a time where the electronics industry is feeling pressure from two sides on the small scale we are facing the fundamental physical limits of silicon, and on the large scare we are facing new, abundant-data and distributed-data applications, such as for the internet of things. The future of computing will require both more energy efficient electronics and more big-data driven, application-specific designs.

Magnetic devices are a promising candidate for future electronics, due to their low-voltage operation...

Pages