Quantum Computing in Chemical and Materials Sciences
Proposals are requested for basic experimental and theoretical research focused on using quantum computers to solve scientific problems in chemical and materials sciences. Proposals should address the Priority Research Opportunities identified in the report from the “Basic Energy Sciences Roundtable on Opportunities for Quantum Computing in Chemical and Materials Sciences.” Areas of research include: controlling the quantum dynamics of nonequilibrium chemical and materials systems; unraveling the physics and chemistry of strongly correlated electron systems; embedding quantum hardware in classical frameworks; and bridging the classical–quantum computing divide. Proposals must focus on fundamental research that will target computations on realistic problems relevant to Basic Energy Sciences priorities using quantum computers that are available today and in the near (<10 year) term. For example, quantum materials, such as superconductors and complex magnetic materials, show novel kinds of ordered phases that are difficult to access via computation on classical computers. Quantum sensors based on solid materials could be greatly improved with insight from quantum computations, as could materials for information technologies. Another example is quantum chemical dynamics, which is a problem that is intrinsically well suited to studies on quantum computers, with applications including catalysis and artificial photosynthesis. Proposals that focus solely on algorithmic advances, software tools, or on engineering and/or building quantum computers will not be responsive.