In the news

Farnam Jahanian Named President of Carnegie Mellon University

  • By Burcu Ozden
  • 13 March 2018

Farnam Jahanian, the nationally recognized computer scientist, successful entrepreneur, senior public servant and respected leader in higher education, has been appointed as the 10th president of Carnegie Mellon University. The appointment is effective immediately, with a formal inauguration scheduled for fall 2018.

Jahanian holds a master's degree and a Ph.D. in computer science from the University of Texas at Austin. He is a fellow of the Association for Computing Machinery (ACM), the Institute of Electrical and Electronic Engineers (IEEE) and the American Association for the Advancement of Science (AAAS).

He currently serves as chair of the National Research Council's Computer Science and Telecommunications Board (CSTB), sits on the executive committee of the Council on Competitiveness, and is a trustee of the Dietrich Foundation. He also is a board member of the Computing Research Association (CRA), the National Center for Women and Information Technology (NCWIT), the Advanced Robotics for Manufacturing (ARM) Institute, and the Allegheny Conference on Community Development, among others.

 

Jim Bain named ECE's new Associate Department Head for Academic Affairs

  • By Burcu Ozden
  • 28 February 2018

 James Bain was recently named ECE's new Associate Department Head for Academic Affairs, effective June 1, 2018. In his new role, Bain will extend his work with the Graduate Studies Committee to the entire student body and play a vital role in establishing ECE's long-term educational strategy.

Congratulations!

Peng Liu receives the 2018 Award in Early Excellence in Physical Organic Chemistry

  • By Burcu Ozden
  • 28 February 2018

Peng Liu has been named the winner of the 2018 Award in Early Excellence in Physical Organic Chemistry, sponsored by John Wiley & Sons, Inc.  The award presentation will take place at the Reaction Mechanisms Conference, to be held at the University of British Columbia, Vancouver, BC, Canada, June 10-13, 2018, where he will receive the honorarium of $5000 and a plaque.

Congratulations!
 

Frolov and Team Featured on Pitt Website

  • By Burcu Ozden
  • 12 January 2018

PQI Members Sergey Frolov, David Pekker, Noa Marom, Michael Hatridge, Benjamin Hunt, and Hrvoje Petek featured on Pitt Website for their accomplisment on landing $4.8M award from National Science Foundation (NSF) for International Research and Education (PIRE) program.Sergey Frolov will be the Director of new PIRE.  Hrvoje Petek, Michael Hatridge and David Pekker are other PQI co-PIs for this project. The duration of the program is 5 years.

Givi and Daley model turbulence with quantum computing

  • By Jenny Stein
  • 20 November 2019

Turbulence in fluid mechanics has been a scientific challenge since at least the 16th century when Leonardo da Vinci sketched the chaotic movements of water flowing around obstacles in the Arno River. It is regularly described as one of the last unsolved problem of classical physics – a solution to the Navier-Stokes equation, the mathematical underpinning of turbulence, was declared a Millennium Prize Problem by MIT’s Clay Mathematics Institute in 2000. The $1 million prize remains unclaimed in 2019.

Pitt researcher Peyman Givi hopes to confront that centuries-old challenge with the power of a new generation of computing. He and a team developed  an algorithm capable  of using quantum computing to model turbulence at an unprecedented level of detail.

Givi, Distinguished Professor of mechanical engineering and materials science, explains the importance of turbulence. “Turbulence is central to the efficiency of fuel. Turbulence enhances mixing –  more mixing creates more reactions and more reactions mean more power. No turbulence, little reaction, little power.”

The challenge of modeling turbulence is evident in the Da Vinci drawings. “We create simulations of eddies – the swirling wheels and whirls and vortices of all sizes you see in the drawings. Fluid mechanics is composed of very large differences in scales. If for example you calculate drag on an airplane wing [fluid mechanics involves both liquids and gases], the largest scale is the entire wing, the smallest scale is close to nanometers. A grid big enough to take in all the scales together won’t fit on a computer. So we simulate the largest part – I don’t need to resolve the smallest scale to model the effects. But the model is not an exact science – you are introducing art into science.”

The science may become more exact using quantum computing. Givi is co-author on a May 2019 paper in the journal Combustion Theory and Modelling – “Quantum algorithm for the computation of the reactant conversion rate in homogeneous turbulence” – presenting an algorithm for predicting the rate of reaction in simulated turbulence and exploring the potential for applications of quantum technology to fluid dynamics and combustion problems. Citing the rapid progress in the development of quantum computing hardware, the paper posits the importance of designing algorithms now that could eventually run on that hardware – “quantum algorithm with a real engineering application.” 

Paul Leu develops materials for next-gen electronic displays

  • By Jenny Stein
  • 13 November 2019

A $1 million award from the Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy Small Business Innovation Research (SBIR) program will fund collaborative research to replace ITO with metal “microgrid” conductors to improve OLED performance. The research will be led by Paul Leu, PhD, associate professor of industrial engineering at the University of Pittsburgh’s Swanson School of Engineering, and Electroninks, a technology company in Austin, Texas.

“Electronink’s metal ink can cure at low temperatures, be printed into patterns, and has conductivity comparable to bulk metal,” says Leu. “By using a new metal patterning technique that prints the metal grid directly on glass or plastic, we can create ‘microgrid’ conductors that can outperform ITO at a lower manufacturing cost.” 

Leu and Electroninks began the project in 2018, working for a year in a proof-of-concept phase to show that their metal inks could work as a replacement for ITO. “The first phase of the project was successful,” says Ziyu Zhou, lead graduate student on the project. “We were able to achieve high performance, with transparency over 90 percent and sheet resistance under 1 ohm per square.” The DOE grant funds Phase II, in which Leu’s lab and Electroninks will continue to investigate and develop the technology, process, and implementation to commercial products with its industrial partners.  They will be developing and evaluating the technology for a variety of applications such as displays, lighting, touch sensors, and electromagnetic interference shielding.

James McKone highlighted as an emerging investigator in materials chemistry

  • By Jenny Stein
  • 6 November 2019

From the design of improved batteries to the use of solar and wind power for commodity chemical production, the University of Pittsburgh’s James McKone explores ways that chemical engineering can make the world more sustainable. That’s why his most recent work, investigating ways that the chemical industry can use renewable electricity as its energy source, is featured in the Journal of Materials Chemistry A Emerging Investigators special issue.

The themed issue highlights the rising stars of materials chemistry research, from nanoparticle inks to next-generation solar cells. The featured investigators are early in their careers and were recommended by other experts in the field.  “We’re glad to have James on our faculty and know this honor is well-deserved,” says Steven Little, PhD, chair of the Department of Chemical and Petroleum Engineering at the Swanson School. “It confirms what we already know: that his lab’s work has the potential to influence the direction of future discoveries in energy production, energy storage and beyond.” 

Tevis Jacobs: Infectiously inspiring in the classroom

  • By Jenny Stein
  • 15 October 2019

In his classroom, engineering faculty member Tevis Jacobs is one animated presenter.

He speaks rapidly and enthusiastically while adding diagrams to clear overlays on two screens of slides projected onto the white board.  The course is “Mechanical Behavior of Materials,” which examines how things bend and break, down to their atomic structures. Today’s class encompasses the concepts of “work hardening,” “twinning,” and nickel-based super alloys (“You guys know that is my favorite topic,” Jacobs says). 

Jacobs joined the faculty of the Swanson School of Engineering in fall 2015, teaching this undergraduate class and another on experimental techniques, and offering one on tribology — the study of friction, wear and lubrication of sliding surfaces — to graduate students.

“I’ve always wanted to understand how the world works,” Jacobs says. “Mechanical engineering and materials science: what I like about them is that they are all around us. We are constantly interacting with objects, seeing how they perform. I like the idea of making them better in the future … but the current goal is (studying) ‘Why did this thing happen in this way?’ “What I love,” he adds, “especially in the classes I’m teaching now: we can answer that.”

Pages