In the news

Semiconductor Nanocrosses Lay Foundations for Topological Quantum Bits

  • By Workstudy User
  • 17 October 2013

PQI faculty Sergey Frolov co-authors a paper in Nature Nanotechnology on the growth and characterization of high quality semiconductor nanocross structures. These structures are the building blocks for topological quantum bits based on recently discovered Majorana fermions.

These tests should make clear whether or not Majorana’s (and the nanowires that house them) are a suitable base for the so-called topological quantum computer.

Measuring Many-Body Entanglement

  • By Workstudy User
  • 4 September 2012

PQI faculty Andrew Daley and his colleagues have proposed a scheme for the measurement of entanglement in a system of cold atoms in an optical lattice. Entanglement is an important theoretical concept, but was previously thought to be difficult to measure in microscopic many-particle systems. They tackle the problem by asking how one might track the changes in entanglement in a nonequilibrium many-body system.

Their proposal involves an optical lattice created by lasers and filled with bosons: identical copies of a boson chain stored in the lattice are coupled as a potential barrier between them is reduced. After tunneling has occurred, a measurement of how the lattice wells are populated would give the entanglement entropy.