In the news

Vincent Sokalski receive grant for AMPED Consortium

  • By Jennifer Zheng
  • 15 February 2022

Congratulations to Vincent Sokalski for winning a grant for the AMPED Consortium. Read the CMU MSE article below! 

McHenry, Sokalski receive planning grant for Advanced Magnetics for Power and Energy Development (AMPED) Consortium. The Advanced Magnetics for Power and Energy Development (AMPED) Consortium has received a planning grant from the National Science Foundation (NSF) through its prestigious Industry-University Cooperative Research Centers Program (IUCRC).

University of Pittsburgh researchers develop new modular-based system for quantum computers

  • By Jennifer Zheng
  • 2 February 2022

Researchers at the University of Pittsburgh have successfully developed and patented a new modular-based system for connecting together qubits — a unit of measurement and a building block behind quantum computing.

In modern computing, computers use bits of information to solve problems, amid a myriad of other applications that computers can do. The bits that make up modern computers consist of ones and zeros, a signal that translates to being either on and off.

 

UCLA Announces New Masters Degree in Quantum Science

  • By Jennifer Zheng
  • 15 December 2021

The University of California, Los Angeles is happy to announce their new Master of Quantum Science and Technology (MQST) Degree. MQST is a one-year in-person graduate professional degree program designed to prepare students for careers in quantum science in private industry, national labs, and government agencies.The program curriculum is tailored to students and early career professionals looking to enter the quantum industry workforce with a combination of theoretical knowledge and practical skills that will enable them to seek opportunities with focused intent and present as attractive highly prepared candidates to employers...

Pushing Quantum Information Across the Channel

  • By Jennifer Zheng
  • 7 December 2021

Congratulations to Vikesh Siddhu for publishing his paper, "Entropic singularities give rise to quantum transmission," in Nature Communications!

The information age is built on efficiently processing digital data. Today this data is processed classically as bits of zeros and ones. But there exists a more powerful kind of information processing. Quantum information, which obeys the laws of quantum mechanics, can not only carry those classic ones and zeros but it can impart them with unbreakable security and process them with computational power that may go beyond the reach of the most powerful supercomputers. . .

 

NSF Grant Will Boost Pitt’s Research Computing Resources

  • By Jennifer Zheng
  • 23 November 2021

A multi-disciplinary team of Pitt researchers has landed a $1.2 million National Science Foundation (NSF) award for new computing resources that will greatly boost the Center for Research Computing’s (CRC) capabilities in speed, power, and scope. Chemistry associate professor Geoffrey Hutchison led the proposal along with associate professors Lillian Chong in chemistry, Inanc Senocak in mechanical engineering and materials science, and David Koes in computational and systems biology. Internal Pitt funding added to the grant creates a total of over $1.5 million for new resources...

Singh Named Special Assistant for Quantum Education

  • By Jennifer Zheng
  • 9 November 2021

Congratulations to Chandralekha Singh, who has been selected as special assistant to the provost for quantum education. 

In her new role, Singh will work to develop undergraduate and graduate programs in quantum science, convening a committee of faculty members from across the University who share interests in quantum science and contribute to our Quantum Science Initiative. 

Cudd said in her announcement that, “The importance of quantum science has emerged as a space that is key to Pitt’s academic and research portfolios...

Thwarting Counterfeiting with Programmable Hardware

  • By Jennifer Zheng
  • 26 October 2021

Susan FullertonKe Xu, and their colleague, Eric Beckman, recently received a $553,482 NSF grant for their project titled “Ion-Locked Polymorphic Electronics for Hardware Security.” 

Hardware and intellectual property piracy costs the U.S. billions of dollars every year. One promising solution to this issue is polymorphic electronics, or circuits that can be reprogrammed on-the-fly, thereby obscuring their true functionality until they are ready to be used. However, current approaches involve . . . 

Correlated electrons ‘tango’ in a perovskite oxide at the extreme quantum limit

  • By Jennifer Zheng
  • 5 October 2021

A team led by the Department of Energy’s Oak Ridge National Laboratory has found a rare quantum material in which electrons move in coordinated ways, essentially “dancing.” Straining the material creates an electronic band structure that sets the stage for exotic, more tightly correlated behavior – akin to tangoing – among Dirac electrons, which are especially mobile electric charge carriers that may someday enable faster transistors. The results are published in the journal Science Advances. . .

 

Preparing Students to be Leaders of the Quantum Information Revolution

  • By Jennifer Zheng
  • 28 September 2021

As the crowning technological inventions of the first quantum revolution—transistors, lasers, and computers—continue to enrich our lives, newfound excitement surrounds the use of quantum phenomena to create a second quantum revolution. Quantum computers will compute faster than existing classical ones and enable computations that were not previously possible. Quantum sensors will detect one-part-in-a-million variations in Earth’s gravitational field or tiny magnetic fields emanating from the human brain. Quantum communication technologies will send information securely over long distances, protected by fundamental laws of nature. . .

Pages