The Keith group applies and develops computational chemistry to study and discover solutions to problems at the interface of engineering and basic science. They are currently focused on modeling chemical reaction mechanisms and the atomic scale of materials to help develop renewable energy and sustainability technologies.
The group uses quantum chemistry-based multiscale modeling to predict and study the atomic scale of materials and chemical reactions. With electronic structure and atomistic methods, they can investigate fundamental reaction steps at different time- and length-scales that would otherwise be difficult or impossible to investigate with experiment.
Notably, their studies are entirely carried out in silico (on a computer) and almost entirely free from artificial biases that are present when using experimental inputs. Whether doing so alone or in collaboration with experimentalists, the group provides deep perspective on the atomic-scale of catalytic environments to understand how they work and how to further improve them.
The 'ground-up' multiscale modeling approach uses appropriate levels of quantum chemistry (QC) theory (typically on up to ca. 200 atoms) to model reaction energies, barrier heights, pKas, and standard redox potentials. Using data obtained from QC theory, they can also develop analytic reactive forcefields, which are capable of modeling reaction dynamics on systems on the order of 100,000 atoms. Reactive forcefield data in turn can be used to generate rate constant libraries for kinetic Monte Carlo (kMC) simulations to model larger time-scale and length-scale phenomena such a nanoparticle/material growth and ripening.