Spring 2019

Understanding Molecular and Hybrid Crystals from First Principles

Leeor Kronik
Thursday, January 17, 2019 - 2:30pm

Molecular crystals are crystalline solids composed of molecules bound together by relatively weak intermolecular interactions, typically consisting of van der Waals interactions and/or hydrogen bonds. Hybrid crystals combine molecular units and covalent/ionic networks.

Both classes of crystals play an important role in many areas of science and engineering, ranging from biology and medicine to mechanics and electronics. Therefore, much effort has been dedicated to understanding their structure and properties.

Predicting the behavior of such materials from first


PRL at 60: You have your physics results, now what?

Dr. Samindranath Mitra
Monday, March 25, 2019 - 4:00pm

In a talk that I am really hoping will morph into a free-flowing Q and A session, I will discuss the role that PRL plays in disseminating your physics results. The process is a cascading sequence that entails interacting with journal editors, referees, conference chairs, journalists, department chairs, deans, funding agencies, and others. The tools however have changed in recent years; the arrival of social media, search engines, and electronic repositories has us in a state of flux. PRL published its first paper 60 years ago. Let's look back and forward.

A Gap Protected zero-Hall Effect State in a Semimetal with Glide Symmetry

Dr. Nai Phuan Ong
Monday, February 18, 2019 - 4:00pm

Abstract: A new direction in topological quantum matter research is the exploration of the large class of nonsymmorphic metals which include glide symmetry operations in their space group (a glide gx =Mx.T is a mirror reflection Mx combined with a fractional translation T in the mirror plane). The layered material KHgSb is analogous to stacking graphene together with distinct ions in the A and B sublattices. A half-lattice translation between adjacent layers renders it nonsymmorphic. KHgSb has been predicted to feature double quantum spin Hall (QSH) surface states in addition to hourglass...

Chemical and Physical Considerations in the Production of a Cup of Coffee

Christopher Hendon
Monday, February 11, 2019 - 4:00pm

Despite coffee’s ubiquity and tremendous economic value (~1.5% of the USA GDP), there remains very little research in the field. Yet, numerous physical and chemical processes play a determining role in cup quality, ranging from agricultural practices, to roasting and brewing. This talk canvases the landscape of coffee research to date, detailing areas that require further study, as well as discussing our early efforts to better understand the key factors that determine cup quality and reproducibility.