All Videos

We set out to study a system which couples a nanomechanical harmonic oscillator to a single spin. While individual spins are intrinsically quantum objects, mechanical resonators are usually observed as classical systems. Not coincidentally, spins are usually largely isolated from their environment, while nanomechanical devices excel at coupling to almost everything. In our system, a spin and a ​nanomechanical resonator interact such that they perform quantum non-demolition (QND) measurements on each other, enabling a bridge between the quantum and classical worlds. The strength of the coupling is enhanced by utilizing an avoided level crossing of the coupled spin-resonator system. The sensitivity is maximized by minimizing the mass of the oscillator, leading us to explore graphene resonator and trap-based implementations. Diamond nitrogen vacancy centers are chosen as the source of a spin due to their exceptional spin state coherence times, large zero-field splitting, and optical addressability. Progress towards an experimental realization of this system has further lead us to improve graphene growth techniques, develop novel fabrication methods, and create magnetic traps for diamond nanocrystals.

In transport through nanostructures connected to two semi-infinite leads, the transmission probability calT (E) as a function of the energy E of the incoming electron plays a central role in the Landauer calculation of the electrical conductance G. A quantum dragon nanostructure is one which when connected to appropriate leads has total electron transmission for all energies, calT (E) =1. In two-lead measurements of single-channel quantum dragons, the quantum of conductance, G0 = 2e2 / h , should be observed. A quantum dragon may have strong scattering. In the disorder was along the axis of electron propagation, the z axis. We show that quantum dragon nanostructures can be found for strong disorder perpendicular to the z axis. In select types of nanostructures, we find the ratio of the dimension of the parameter space where quantum dragons exist to that of the complete parameter space. The results use the single-band tight-binding model, and are for the case with only one open channel and homogeneous leads. One type of nanostructure with calT (E) =1 has completely disordered slices perpendicular to the z axis, but identical slices along the z direction.

Electronic confinement at nanoscale dimensions remains a central means of science and technology.  I will describe a novel method for producing electronic nanostructures at the interface between two normally insulating oxides, LaAlO3 and SrTiO3.  Conducting nanostructures are written, erased and reconfigured under ambient conditions at room temperature, similar to the operation of an etch-a-sketch toy.  A wide variety of devices can be created, including nanowires, tunnel junctions, diodes, field-effect transistors, single-electron transistors, superconducting nanowires, and nanoscale THz emitters and detectors.   After an introduction, I will focus on two recent results: the discovery of a novel phase in which electrons form pairs without becoming superconducting, and the discovery of electronically controlled ferromagnetism at room temperature.  Both phenomena occur in the same family of LaAlO3/SrTiO3 heterointerfaces.

Ed Gerjuoy gives a colloquim on the history of Physics.

Alexandre is an undergraduate senior who majors in physics at the University of Pittsburgh. He began his research with Professor Jeremy Levy when he was a freshman. Gauthier’s research focuses on the production of an advanced canvas analyzer, used to measure the electrical properties of multiterminal devices, and a low temperature scanning probe microscope, used to study electromechanical properties of single-electron transistors. He was awarded the Goldwater Scholarship for his innovations which was described by Chancellor Mark A. Nordenberg as “the highest national honor that can be won by undergraduate students studying science, math, or engineering, which makes the entire Pitt community particularly proud of Alexandre's selection.” 

Cong Wang is a graduate student in the Department of Physics and Astronomy at Pitt.

He works in the Petek lab where he does research in ultrafast surface phenomena.

Cong was a PQI Graduate Student Research Fellow in 2014/2015 for his work on “Three-Dimensional Coherent Photoelectron Spectroscopy".

Michelle Tomczyk is a graduate student in the Department of Physics and Astronomy at Pitt.

She works in the Levy lab where she studies quantum transport phenomena at the lanthanum aluminate and strontium titanate interface. She creates nanostructures at the interface using an innovative AFM lithography technique in order to study emergent phenomena like superconductivity and magnetism. This information can benefit classical as well as quantum computing.

Michelle won a travel award at the Science 2014 poster session for her poster on “Electron Pairing Without Superconductivity”.

Mathew Daniels is a graduate student in the Department of Physics at Carnegie Mellon University.

He works in the Xiao group on magnonics and antiferromagnets.

Mathew won a travel award at the Science 2014 poster session for his poster on “Spin-Transfer Torque Induced Spin Waves in Antiferromagnetic Insulators”.

Shonali Dhingra is a graduate student in the Department of Physics and Astronomy at Pitt. 

She works in the D’Urso lab where she couples nano oscillators to spin systems.

Shonali was a PQI Graduate Student Research Fellow in 2014/2015 for her work on "Quantum Interactions Between a Nano-Mechanical Oscillator and a Single Spin".

Odbadrakh Tuguldur is a graduate student in the Department of Chemistry at Pitt.

He works in the Jordan group on the infrared signature of protonated water clusters as well as the superatom states of buckyballs.

Odbadrakh was a PQI Graduate Student Research Fellow in 2014/2015 for his work on "Many-Body Polarization via Quantum Drude Oscillators and Its Application to Excess Electron Systems".