Skip to main content

Gurudev Dutt

University of Pittsburgh
Physics
Education
Ph.D., Physics, University of Michigan, 2004
Profile

Gurudev Dutt received his M.S. in Electrical and Electronics Engineering and his Ph.D. in Physics from the University of Michigan. He then moved to Harvard University as a Research Associate where his team demonstrated coherent quantum control of electron and nuclear spin quantum bit (qubit) registers in diamond at room temperature. He then joined the University of Pittsburgh in 2008. He received the National Science Foundation’s Faculty Early Career Development (CAREER) Award in 2009 and the Alfred P. Sloan Research Fellowship in 2010, and his achievements have been reported in local (Pittsburgh Post-Gazette) and national (NPR, NY Times) media.
 

Research

Gurudev Dutt focuses on the quantum control of condensed matter systems. Advances in material fabrication and nanotechnology have pushed modern electronic and optical devices to regimes where quantum properties of matter become important. A key feature of quantum physics is the quantum superposition principle. For a single particle, this permits the existence of a phase coherent quantum wavefunction; for two or more particles, quantum entangled wavefunctions exhibit non-classical correlations between the particles. Quantum coherence and entanglement are not only the cornerstone of modern physics, but also have become tools in the growing field of quantum information science and technology with which to realize new paradigms for secure communication, enhanced computation, and precision metrology. 
While there have been a number of demonstrations of fundamental principles using isolated atoms and photons, coherent quantum control and large scale entanglement remains experimentally challenging in robust, stable condensed matter systems. The basic building blocks of these solid-state quantum systems are simple, and familiar to most physicists: single spins, photons and springs. The Dutt group is building quantum control toolboxes for thesesystems, motivated by the need for larger interconnected systems. Tools from several areas such as nuclear magnetic resonance, quantum optics, quantum information science, chemistry and nanoscience are required in this hybrid approach. 

Students

Title Position Email
Anca-Monia Constantinescu Postdoctoral Fellow anc2598@pitt.edu
Peng Ji Postdoctoral Fellow pej13@pitt.edu
Chenxu Liu Graduate Student chenxu.liu@pitt.edu
Ummal Momeen Postdoctoral Fellow
Naufer Nusran Graduate Student nmn6@pitt.edu
Jonathan Vannucci Postdoctoral Fellow
Kai Zhang Graduate Student kaz26@pitt.edu
Most Cited Publications

"Nanoscale magnetic sensing with an individual electronic spin in diamond," J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth & M. D. Lukin, Nature 455, 644 (2008)
"Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond," M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, M. D. Lukin, Science 316, 1312 (2007)
"Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond," L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, M. D. Lukin, Science 314, 281 (2006)
"Quantum entanglement between an optical photon and a solid-state spin qubit," E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov & M. D. Lukin, Nature 466, 730 (2010)
"Stimulated and Spontaneous Optical Generation of Electron Spin Coherence in Charged GaAs Quantum Dots," M. V. Gurudev Dutt, Jun Cheng, Bo Li, Xiaodong Xu, Xiaoqin Li, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, Sophia E. Economou, Ren-Bao Liu, and L. J. Sham, Phys. Rev. Lett. 94, 227403 (2005)

Recent Publications

"Single-photon heralded two-qubit unitary gates for pairs of nitrogen-vacancy centers in diamond." Liu, Chenxu, M. V. Dutt, and David Pekker.  Physical Review A 98, no. 5 (2018).
"Measurement based 2-qubit unitary gates for pairs of Nitrogen-Vacancy centers in diamond." Liu, Chenxu, M. V. Dutt, and David Pekker. arXiv preprint arXiv:1808.10015 (2018).
"Multiple-photon excitation of nitrogen vacancy centers in diamond." Ji, Peng, R. Balili, J. Beaumariage, S. Mukherjee, D. Snoke, and M. V. Dutt. Physical Review B 97, no. 13 (2018).
"Robust manipulation of light using topologically protected plasmonic modes." Liu, C., Dutt MV Gurudev, and D. Pekker. Optics express 26, no. 3 (2018): 2857.
"Observation of Diamond Nitrogen-Vacancy Center Photoluminescence under High Vacuum in a Magneto-Gravitational Trap." Ji, Peng, Jen-Feng Hsu, Charles W. Lewandowski, M. V. Dutt, and Brian D'Urso. In APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts. (2016).