Skip to main content

Jennifer Laaser

Position
Faculty
Email
j.laaser@pitt.edu
Phone

Tags

Affiliation
Department of Chemistry, University of Pittsburgh
Institution
University of Pittsburgh
Research

In the Laaser Lab, we are interested in developing a physical understanding of how changes at the molecular level translate to the macroscopic properties of responsive polymeric materials. For example, how does a change in charge spacing affect the interactions between charged polymers, and at what point do the polymers stop behaving like isolated chains in solution and start behaving like part of a bulk material? How do orientational changes in single polymer chains propagate through a material to achieve macroscopic ordering? And how do polymeric networks transduce force, to achieve things like mechanochemical responses?
We explore these questions by a number of optical and spectroscopic methods, such as light scattering and Raman and infrared spectroscopy, along with classical materials characterization methods like rheology and electron microscopy. Together, these methods allow us to develop new understanding of the structure and dynamic properties of responsive polymeric materials, and offer students the opportunity to gain broad experience in both physical chemistry and polymer science.

Most Cited Publications

"Adding a dimension to the infrared spectra of interfaces using heterodyne detected 2D sum-frequency generation (HD 2D SFG) spectroscopy," Wei Xiong, Jennifer E. Laaser, Randy D. Mehlenbacher, and Martin T. Zanni, PNAS 108, 20902 (2011)
"Time-Domain SFG Spectroscopy Using Mid-IR Pulse Shaping: Practical and Intrinsic Advantages," Jennifer E. Laaser, Wei Xiong, and Martin T. Zanni, J. Phys. Chem. B 115, 2536 (2011)
"Transient 2D IR Spectroscopy of Charge Injection in Dye-Sensitized Nanocrystalline Thin Films," Wei Xiong, Jennifer E. Laaser, Peerasak Paoprasert, Ryan A. Franking, Robert J. Hamers, Padma Gopalanand Martin T. Zanni, J. Am. Chem. Soc. 131,18040 (2009)
"Two-Dimensional Sum-Frequency Generation Reveals Structure and Dynamics of a Surface-Bound Peptide," Jennifer E. Laaser, David R. Skoff, Jia-Jung Ho, Yongho Joo, Arnaldo L. Serrano, Jay D. Steinkruger, Padma Gopalan, Samuel H. Gellman, and Martin T. Zanni, J. Am. Chem. Soc. 136, 95 (2014)
"Bridge-Dependent Interfacial Electron Transfer from Rhenium−Bipyridine Complexes to TiO2 Nanocrystalline Thin Films," Peerasak Paoprasert, Jennifer E. Laaser, Wei Xiong, Ryan A. Franking, Robert J. Hamers, Martin T. Zanni, J. R. Schmidt and Padma Gopalan, J. Phys. Chem. C 114, 9898 (2010)

Recent Publications

"Charge-Density-Dominated Phase Behavior and Viscoelasticity of Polyelectrolyte Complex Coacervates," J Huang, FJ Morin, and JE Laaser.  Macromolecules (2019)
"Charge Density-and Hydrophobicity-Dependent Dynamics of Polyelectrolyte Complex Coacervates,"  J Laaser and J Huang.  APS Meeting Abstracts (2019)
"19F Magnetic Resonance Imaging of Injectable Polymeric Implants with Multiresponsive Behavior." Sedlacek, Ondrej, Daniel Jirak, Andrea Galisova, Eliezer Jager, Jennifer E. Laaser, Timothy P. Lodge, Petr Stepanek, and Martin Hruby. Chemistry of Materials 30, no. 15 (2018): 4892-4896.
"Composition-dependent dynamics in polyelectrolyte complex coacervates." Laaser, Jennifer, Frances Morin, and Jun Huang. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, vol. 255. 1155 16TH ST, NW, WASHINGTON, DC 20036 USA: AMER CHEMICAL SOC, 2018.
"Charge Density-Dependent Phase Behavior and Rheology of Polyelectrolyte Complex Coacervates." Morin, Frances, and Jennifer Laaser. Bulletin of the American Physical Society (2018).

Office
1212 Chevron Science Center
Office URL
https://www.google.com/maps/embed?pb=%211m18%211m12%211m3%211d3036.3340402764943%212d-79.9600009846032%213d40.44574307936173%212m3%211f0%212f0%213f0%213m2%211i1024%212i768%214f13.1%213m3%211m2%211s0x8834f229532c90fb%3A0x8f72f6f36e9d41ee%212sChevron%20Science%20Center%2C%20Pittsburgh%2C%20PA%2015213%215e0%213m2%211sen%212sus%214v1472845046913