Featured Video

Recent News

Imanuel Bier Receives NSF Graduate Research Fellowship

  • By Burcu Ozden
  • 24 April 2018

Imanuel Bier is a graduate student in our member Noa Marom's research group. His research combines his interests in quantum mechanical simulations with applied semiconductor research. He has been using computers to study the electron mobilities of organic semiconductors. This research uses a combination of quantum mechanical simulations with machine learning methods to identify correlations between the structure of an organic semiconductor and its electronic properties. He hopes to extend these techniques to molecular interfaces, similar to those found in thin-film organic solar cells. This research could lead to the discovery and design of organic electronics with enhanced electronic properties. 

Gurjyot Sing Sethi Won the 1st Place in the Annual CMU Energy Week Poster and Multimedia Competition

  • By Burcu Ozden
  • 17 April 2018

The CMU Energy Week Poster and Multimedia Competition is a unique opportunity to showcase your energy-related research and other activities, such as software, videos, art, models or sculptures. Participants will be able to submit either Science, Technology, Engineering and Mathematics (STEM) related or Non-STEM related work. 

The competition was open to Carnegie Mellon undergraduate, master's and PhD students and postdoctoral researchers. 

Gurjyot Sing Sethi won the 1st place in this competition with his poster titled "Identifying the prospects of Electrochemical Ammonia Synthesis using First-Principles Calculations."

He was awarded $1,000.

Gurjyot Sing Sethi is a graduate student in Venkat Viswanathan's group.

Venkat Viswanathan Quoted About Lithium-Air Batteries in Chemistry World

  • By Burcu Ozden
  • 17 April 2018

Chemistry World quoted Venkat Viswanathan on the cycle life of lithium-air batteries. These batteries hold a charge greater by a factor of nine compared to lithium-ion. In interpreting the batteries’ cycle life, Viswanathan expresses a distanced view. A traditional lithium-ion battery’s life is measured by its electrical discharge. In a lithium-air battery, discharge from the reaction of lithium and oxygen determines cycle life. But because air comprises more elements than just oxygen, Viswanathan wonders how many side reactions in the electricity delivery artificially boost the cycle life. Mitigating these side reactions should pave the way to developing long-lasting lithium-air batteries.

Watching