Skip to main content

Daniel Lambrecht

University of Pittsburgh
Ph.D., Theoretical and Computational Chemistry, University of Tübingen, Germany, 2008

Daniel Lambrecht received his M.S. (Dipl.-Chem.) from the University of Düsseldorf and his Ph.D. (Dr. rer. nat.) from the University of Tübingen in Germany. He then moved to UC Berkeley as a postdoctoral researcher and finally joined the Chemistry Department of the University of Pittsburgh in 2012. He received the 2014 ACIE (Advisory Council on Instructional Excellence) award to support his proposal to enhance the use of technology for large lecture chemistry classes and the 2014 Camille and Henry Dreyfus Special Grant Program in the Chemical Sciences award for his effort on "Creating an Open Quantum Chemistry Repository” with his PQI colleague Geoff Hutchison.


The Lambrecht lab develops and applys electronic structure approaches to help guide discoveries in catalysis, spectroscopy, and materials chemistry. They develop electronic structure and embedding methods that yield an accurate and computationally feasible description of chemical reactions in solvent or solid environments. In cooperation with experiment, they aim at gaining insights into the thermodynamics, kinetics and spectral signatures along catalytic pathways. Another focus is to provide rationales for the improvement of catalysts. They are working on decomposition methods that allow us to extract correlations between electronic structure descriptors for ligands and solvents and thus ultimately allow to make recommendations for more active catalyst systems. Their research areas include:
Developing reduced-scaling first principles approaches for expedited predictions of molecular and materials properties: The aim is to enable calculations on larger systems than conventionally possible, which allows for more realistic chemical models. The scaling reduction is achieved by screening approaches exploiting the fact that some interactions between electrons (such as dispersion or vdW forces) are short-ranged and can therefore be neglected if the distance is big enough. Other approaches developed in the lab involve sparse matrix techniques, multi-scale approaches, as well as tensor decompositions.
Energy decomposition approaches to split infrared and other spectral signatures into chemically meaningful contributions and to facilitate force field development.
Simulating paramagnetic resonance spectra to identify the structures of metal binding sites in biological systems.
Metal nanoparticles (optical excitation and catalysis).


Title Position Email
Eric Berquist Graduate Student
Miranda Boca Undergraduate Student
Daniel Burrill Graduate Student
Amanda Dumi Graduate Student
Keith Werling Graduate Student
Most Cited Publications

"Advances in molecular quantum chemistry contained in the Q-Chem 4 program package," Y Shao, Z Gan, E Epifanovsky, ATB Gilbert, M Wormit, J Kussmann, ..., Daniel S Lambrecht, ..., Molecular Physics 113, 184 (2015)
"Current status of the AMOEBA polarizable force field," Jay W Ponder, Chuanjie Wu, Pengyu Ren, Vijay S Pande, John D Chodera, Michael J Schnieders, Imran Haque, David L Mobley, Daniel S Lambrecht, Robert A DiStasio Jr, Martin Head-Gordon, Gary NI Clark, Margaret E Johnson, Teresa Head-Gordon, J. Phys. Chem. B 114, 2549 (2010)
"Linear-scaling atomic orbital-based second-order Møller–Plesset perturbation theory by rigorous integral screening criteria" B Doser, DS Lambrecht, J Kussmann, C Ochsenfeld, J. Chem. Phys. 130, 064107 (2009)
"Rigorous integral screening for electron correlation methods," DS Lambrecht, B Doser, C Ochsenfeld, J. Chem. Phys. 123, 184102 (2005)
"Linear-scaling methods in quantum chemistry," C Ochsenfeld, J Kussmann, D S Lambrecht, Reviews in computational chemistry 23, 1 (2007)

Recent Publications

"Generalizing energy decomposition analysis to response properties to inform expedited predictive models." Lambrecht, Daniel S. Computational and Theoretical Chemistry (2018).
"A First Principles Approach for Partitioning Linear Response Properties into Additive and Cooperative Contributions." Lambrecht, Daniel, and Eric Berquist. (2018).
"Ligand−Substrate Dispersion Facilitates the Copper-Catalyzed Hydroamination of Unactivated Olefins", Gang Lu, Richard Y. Liu, Yang Yang, Cheng Fang, Daniel S. Lambrecht, Stephen L. Buchwald, and Peng Liu, J. Am. Chem. Soc., 139, 16548 (2017)
"First-principles derived descriptors for rational design of functional molecular materials." Berquist, Eric, and Daniel Lambrecht. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, vol. 254. 1155 16TH ST, NW, WASHINGTON, DC 20036 USA: AMER CHEMICAL SOC, 2017.
"Polymerization of silyl ketenes using alkoxide initiators: a combined computational and experimental study," Yuanhui Xiang, Daniel J. Burrill, Krista K. Bullard, Benjamin J. Albrecht, Lauren E. Tragesser, John McCaffrey, Daniel S. Lambrecht and Emily Pentzer, Polym. Chem. 8, 5381 (2017)