Skip to main content

Sergey Frolov

University of Pittsburgh
Ph.D., Physics, University of Illinois Urbana-Champaign, 2005

Sergey Frolov received his B.S. in Physics and Mathematics at the Moscow Institute of Physics and Technology in Russia in 2000. He then pursued and obtained his Ph.D. in Physics at the University of Illinois at Urbana-Champaign in 2005. He joined the University of Pittsburgh in 2012 as an assistant professor of Physics. His breakthrough work on signatures of Majorana Fermions, spin-orbit qubits in nanowires, and ballistic spin resonance has received world-wide press coverage in numerous languages such as german, dutch, russian, or italian. He also received several awards since his appointment, including an NSF-CAREER award.


I am an experimentalist in the field of condensed matter physics. I study electrical properties of nanometre-size objects. As we find ways  to shrink one, two or all three dimensions of a solid, insights into how nature works on the scale of single electrons get uncovered. Along come prospects of smaller, faster and fundamentally different electronic devices. A spin computer or a quantum computer are examples. Nanofabrication makes it possible to attach electrodes to individual molecules or build artificial atoms. Novel materials such as graphene and semiconductor nanowires contribute previously unattainable properties to our toolbox. At TU Delft I investigate spin physics in nanowire quantum dots and superconductivity induced in semiconductors. In 2012 I move to the University of Pittsburgh, where I am now building a low temperature quantum transport laboratory.


Title Position Email
Victor Aguilar Postdoctoral Fellow
Seth Byard Graduate Student
Mykola Chernyashevskyy Graduate Student
Maksim Gomanko Graduate Student
Page Harrison Graduate Student
Sanchayeta Ranajit Mudi Graduate Student
Amrita Purkayastha Graduate Student
Tasnum Reza Graduate Student
Amritesh Sharma Graduate Student
Most Cited Publications

"Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices," V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven, Science 25, 1003 (2012)
"New perspectives for Rashba spin–orbit coupling," A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov & R. A. Duine, Nature Materials 14, 871 (2015)
"Spin–orbit qubit in a semiconductor nanowire," S. Nadj-Perge, S. M. Frolov, E. P. A. M. Bakkers & L. P. Kouwenhoven, Nature 468, 1084 (2010)
"Spectroscopy of Spin-Orbit Quantum Bits in Indium Antimonide Nanowires," S. Nadj-Perge, V. S. Pribiag, J. W. G. van den Berg, K. Zuo, S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov, and L. P. Kouwenhoven, Phys. Rev. Lett. 108, 166801 (2012)
"Measurement of the current-phase relation of superconductor/ferromagnet/superconductor π Josephson junctions," S. M. Frolov, D. J. Van Harlingen, V. A. Oboznov, V. V. Bolginov, and V. V. Ryazanov, Phys. Rev. B 70, 144505 (2004)

Recent Publications

Germanium Quantum-Well Josephson Field-Effect Transistors and Interferometers Vigneau, F., Mizokuchi, R., Zanuz, D.C., (...), Lefloch, F., De Franceschi, S. Nano Letters 19(2), pp. 1023-1027 (2019)
Braiding quantum circuit based on the 4π Josephson effect Stenger, J.P.T., Hatridge, M., Frolov, S.M., Pekker, D. Physical Review B 99(3),035307 (2019)
Second-Harmonic Current-Phase Relation in Josephson Junctions with Ferromagnetic Barriers Stoutimore, M.J.A., Rossolenko, A.N., Bolginov, V.V., (...), Ryazanov, V.V., Van Harlingen, D.J. Physical Review Letters 121(17),177702 (2018) 
"Mirage Andreev Spectra Generated by Medoscopuc Leads in Nanowire Quntum Dots." Su, Z., Zarassi, A., Hsu, J.-F., (...), Bakkers, E.P.A.M., Frolov, S.M. Physical Review Letters (2018).
"Control and detection of Majorana bound states in quantum dot arrays." Stenger, J.P.T., Woods, B.D., Frolov, S.M., Stanescu, T.D. Physical Review B 98(8), 085407 (2018).